526 research outputs found

    Enlarging and cooling the N\'eel state in an optical lattice

    Full text link
    We propose an experimental scheme to favor both the realization and the detection of the N\'eel state in a two-component gas of ultracold fermions in a three-dimensional simple-cubic optical lattice. By adding three compensating Gaussian laser beams to the standard three pairs of retroreflected lattice beams, and adjusting the relative waists and intensities of the beams, one can significantly enhance the size of the N\'eel state in the trap, thus increasing the signal of optical Bragg scattering. Furthermore, the additional beams provide for adjustment of the local chemical potential and the possibility to evaporatively cool the gas while in the lattice. Our proposals are relevant to other attempts to realize many-body quantum phases in optical lattices.Comment: 8 pages, 10 figures (significantly revised text and figures

    Trimers, molecules and polarons in imbalanced atomic Fermi gases

    Full text link
    We consider the ground state of a single "spin-down" impurity atom interacting attractively with a "spin-up" atomic Fermi gas. By constructing variational wave functions for polarons, molecules and trimers, we perform a detailed study of the transitions between each of these dressed bound states as a function of mass ratio r=m↑/m↓r=m_\uparrow/m_\downarrow and interaction strength. We find that the presence of a Fermi sea enhances the stability of the pp-wave trimer, which can be viewed as a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) molecule that has bound an additional majority atom. For sufficiently large rr, we find that the transitions lie outside the region of phase separation in imbalanced Fermi gases and should thus be observable in experiment, unlike the well-studied equal-mass case.Comment: 5 pages, 2 figure

    Phase separation and collapse in Bose-Fermi mixtures with a Feshbach resonance

    Full text link
    We consider a mixture of single-component bosonic and fermionic atoms with an interspecies interaction that is varied using a Feshbach resonance. By performing a mean-field analysis of a two-channel model, which describes both narrow and broad Feshbach resonances, we find an unexpectedly rich phase diagram at zero temperature: Bose-condensed and non-Bose-condensed phases form a variety of phase-separated states that are accompanied by both critical and tricritical points. We discuss the implications of our results for the experimentally observed collapse of Bose-Fermi mixtures on the attractive side of the Feshbach resonance, and we make predictions for future experiments on Bose-Fermi mixtures close to a Feshbach resonance.Comment: 7 pages, 3 figures. Extended versio

    Search for weak M1 transitions in 48^{48}Ca with inelastic proton scattering

    Full text link
    The spinflip M1 resonance in the doubly magic nucleus 48^{48}Ca, dominated by a single transition, serves as a reference case for the quenching of spin-isospin modes in nuclei. The aim of the present work is a search for weak M1 transitions in 48^{48}Ca with a high-resolution (p,p') experiment at 295 MeV and forward angles including 0 degree and a comparison to results from a similar study using backward-angle electron scattering at low momentum transfers in order to estimate their contribution to the total B(M1) strength. M1 cross sections of individual peaks in the spectra are deduced with a multipole decomposition analysis. The corresponding reduced B(M1) transition strengths are extracted following the approach outlined in J. Birkhan et al., Phys. Rev. C 93, 041302(R) (2016). In total, 29 peaks containing a M1 contribution are found in the excitation energy region 7 - 13 MeV. The resulting B(M1) strength distribution compares well to the electron scattering results considering different factors limiting the sensitivity in both experiments and the enhanced importance of mechanisms breaking the proportionality of nuclear cross sections and electromagnetic matrix elements for weak transitions as studied here. The total strength of 1.19(6) ÎĽN2\mu_N^2 deduced assuming a non-quenched isoscalar part of the (p,p') cross sections agrees with the (e,e') result of 1.21(13) ÎĽN2\mu_N^2. A binwise analysis above 10 MeV provides an upper limit of 1.62(23) ÎĽN2\mu_N^2. The present results confirm that weak transitions contribute about 25% to the total B(M1) strength in 48^{48}Ca and the quenching factors of GT and spin-M1 strength are comparable in fp-shell nuclei. Thus, the role of of meson exchange currents seems to be neglible, in contrast to sd-shell nuclei.Comment: 11 pages, 9 figures, revised analysis with oxygen contamination remove

    Maximizing the Neel temperature of fermions in a simple-cubic optical lattice

    Full text link
    For a simple-cubic optical lattice with lattice spacing d, occupied by two species of fermionic atoms of mass m that interact repulsively, we ask what conditions maximize the Neel temperature in the Mott insulating phase at density one atom per site, with equal numbers of the two species. This maximum occurs near the edge of the regime where the system is well-approximated by the usual Hubbard model. The correction to the Hubbard-model approximation that produces a "direct" ferromagnetic interaction between atoms in nearest-neighbor Wannier orbitals is the leading term that limits how high the Neel temperature can be made.Comment: 4 pages, 3 figures, minor changes. A new paper, arXiv:0903.0108, expands on this paper and contains most of its result

    Defect mediated melting and the breaking of quantum double symmetries

    Get PDF
    In this paper, we apply the method of breaking quantum double symmetries to some cases of defect mediated melting. The formalism allows for a systematic classification of possible defect condensates and the subsequent confinement and/or liberation of other degrees of freedom. We also show that the breaking of a double symmetry may well involve a (partial) restoration of an original symmetry. A detailed analysis of a number of simple but representative examples is given, where we focus on systems with global internal and external (space) symmetries. We start by rephrasing some of the well known cases involving an Abelian defect condensate, such as the Kosterlitz-Thouless transition and one-dimensional melting, in our language. Then we proceed to the non-Abelian case of a hexagonal crystal, where the hexatic phase is realized if translational defects condense in a particular rotationally invariant state. Other conceivable phases are also described in our framework.Comment: 10 pages, 4 figures, updated reference

    GRIDKIT: Pluggable overlay networks for Grid computing

    Get PDF
    A `second generation' approach to the provision of Grid middleware is now emerging which is built on service-oriented architecture and web services standards and technologies. However, advanced Grid applications have significant demands that are not addressed by present-day web services platforms. As one prime example, current platforms do not support the rich diversity of communication `interaction types' that are demanded by advanced applications (e.g. publish-subscribe, media streaming, peer-to-peer interaction). In the paper we describe the Gridkit middleware which augments the basic service-oriented architecture to address this particular deficiency. We particularly focus on the communications infrastructure support required to support multiple interaction types in a unified, principled and extensible manner-which we present in terms of the novel concept of pluggable overlay networks

    Synaptically induced long-term modulation of electrical coupling in the inferior olive.

    Get PDF
    Electrical coupling mediated by gap junctions is widespread in the mammalian CNS, and the interplay between chemical and electrical synapses on the millisecond timescale is crucial for determining patterns of synchrony in many neural circuits. Here we show that activation of glutamatergic synapses drives long-term depression of electrical coupling between neurons of the inferior olive. We demonstrate that this plasticity is not triggered by postsynaptic spiking alone and that it requires calcium entry following synaptic NMDA receptor activation. These results reveal that glutamatergic synapses can instruct plasticity at electrical synapses, providing a means for excitatory inputs to homeostatically regulate the long-term dynamics of microzones in olivocerebellar circuits
    • …
    corecore